Indian Statistical Institute, Bangalore

B. Math. (hons.) Second/Third Year, Second Semester Ordinary Differential Equations
Mid Term Examination
Date : 22 February 2023
Maximum marks: 30
Time: 2hours
Answer any six, each question carries 5 marks.

1. Prove that $M d x+N d y=0$ is exact if and only if $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$ and use it to solve $\left(\sin x \sin y-x e^{y}\right) d y=\left(e^{y}+\cos x \cos y\right) d x$.
2. Let y_{1} and y_{2} be two linearly independent solutions of $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ on $[a, b]$. Show that $P=\frac{y_{2} y_{1}^{\prime \prime}-y_{1} y_{2}^{\prime \prime}}{W\left(y_{1}, y_{2}\right)}$ and $Q=\frac{y_{1}^{\prime} y_{2}^{\prime \prime}-y_{1}^{\prime \prime} y_{2}^{\prime}}{W\left(y_{1}, y_{2}\right)}$.
3. Let p and q be constants. Reduce $x^{2} y^{\prime \prime}+x p y^{\prime}+q y=0$ to a linear equation with constant coefficients and use it to solve $x^{2} y^{\prime \prime}+2 x y^{\prime}-12 y=0$.
4. Solve the system $x^{\prime}=3 x-4 y$ and $y^{\prime}=x-y$.
5. If y is a nonzero solution of $y^{\prime \prime}+P y^{\prime}+Q y=0$ on $[a, b]$ where P and Q are continuous functions on $[a, b]$. Prove that $\{x \in[a, b] \mid y(x)=0\}$ is a finite set.
6. Solve $y^{\prime \prime}+x y=0$ in terms of power series of x.
7. Does $2 x y^{\prime \prime}+(3-x) y^{\prime}-y=0$ has two independent Frobenius series solutions? Justify your answer.
8. (a) Prove $\frac{d\left(x^{p} J_{p}(x)\right)}{d x}=x^{p} J_{p-1}(x)$ (marks 3).
(b) Prove that between two positive zeros of J_{p}, J_{p-1} has a zero.
